

What is EVM?

- A project management technique for integrating and quantifying project costs and schedules
 - Starts with a controlled baseline
 - Allows objective assessment and quantification of current project performance
 - Helps predict future performance based on trends
- Provides objective, accurate and timely data for effective decision making

TenStep Earned Value Management Process™

Copyright © 2009 TenStep, Inc

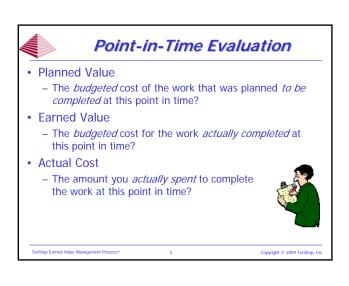
Questions Answered by EVM

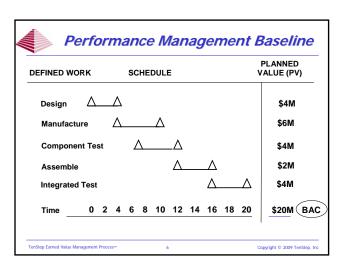
- · Are we ahead of or behind schedule?
- When is the project likely to be completed?
- Are we currently under or over our budget?
- What is the remaining work likely to cost?
- How much will we be under or over budget at the end?

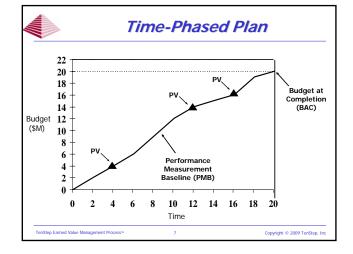
TenStep Earned Value Management Process™

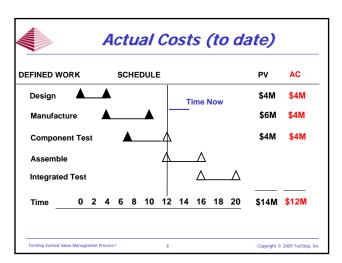
Copyright © 2009 TenStep, Inc

The "Big Three"

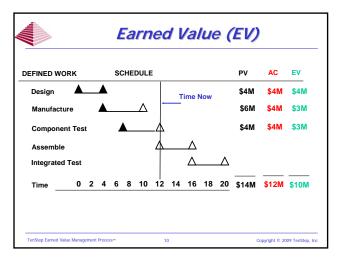

- Planned Value (PV)
- Actual Costs (AC)
- Earned Value (EV)

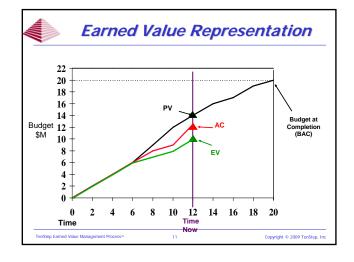


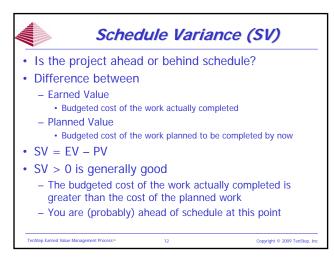

Provide the basis for completing earned value measurement techniques

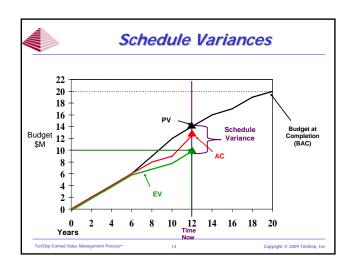

TenStep Earned Value Management Process

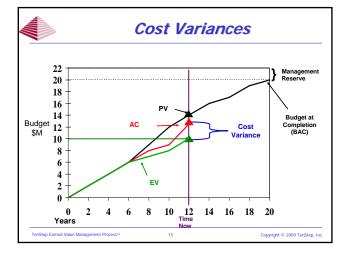
Copyright © 2009 TenStep, Inc










Cost Variance (CV)

- Is the project over or under budget?
- Difference between
 - Earned Value
 - · Budgeted cost of the work actually completed
 - Actual Costs
 - · Actual cost of the work completed
- CV = EV AC
- CV > 0 is generally good
 - The budgeted cost of the work completed is greater than the actual cost of the work completed
 - You are (probably) under budget at this point

TenStep Earned Value Management Process™

14

Copyright © 2009 TenStep, Inc

Schedule Performance Index (SPI)

- Schedule efficiency is the "run rate"
- SPI = EV / PV
- An SPI greater than 1.0 is favorable
 - The budgeted cost of the work actually completed is greater than the cost of the planned work
- Example EV is \$110, PV is \$100
 - SPI is 1.1 (EV/PV)
 - This means that the budgeted cost of the work completed is \$110, but the planned work at this point is \$100.
 - We are getting more work done than planned

TenStep Earned Value Management Process™

Copyright © 2009 TenSte

Cost Performance Index (CPI)

- · Cost efficiency is the "burn rate"
- CPI = EV / AC
- A CPI greater than 1.0 are favorable
 - The budgeted cost of work completed (EV) is greater than the actual cost completed (AC)
- Example EV = \$110, AC = \$100
 - CPI is 1.1. (EV/AC)
 - This means that the budgeted cost of the work completed is \$110, but the actual cost is only cost \$100
 - We are getting the same work done for lower cost

TenStep Earned Value Management Process™

17

Copyright © 2009 TenStep, Inc

Estimate to Complete (ETC)

- ETC
 - = BAC EV (atypical variances)
 - = (BAC EV)/ CPI (typical variances)
- For example (typical variance)
 - Earned Value is \$200,000
 - You are running 10% overbudget to get your work done so far, so the CPI is .90
 - The project budget (BAC) is \$600,000
 - -ETC = (\$600,000 \$200,000) / .90) or \$444,444

TenStep Earned Value Management Process™

18

Copyright © 2009 TenStep, Inc

Typical vs. Atypical Variances

- Forecasting future expectations based on current results
- Typical calculations assume that future variances will be similar, or typical, to current variances
 - Utilize the Cost Performance Index (CPI) as a factor
- Atypical calculations assume that current variances are anomalies and will not occur in the future
 - Do not use a performance factor

FenStep Earned Value Management Process™

Co

Estimate at Completion

- EAC = AC + ETC
- For example
 - Actual cost to date is \$500,000
 - You are running 10% overbudget to get your work done so far, so the CPI is .90.
 - The budgeted cost of the work remaining is \$100,000
 - EAC = \$500,000 + (\$100,000 / .90) or \$611,111

TenStep Earned Value Management Process™

Copyright ©

Variance at Completion (VAC)

- Difference between:
 - Budget at Completion (BAC)
 - Estimate at Completion (EAC)
 - -VAC = BAC EAC

TenStep Earned Value Management Process™

21

Copyright © 2009 TenStep, Inc

Exercise

- Example
 - Project duration is 20 Months
 - Time now is 12 Months (60%)
 - Planned Value is \$14M
 - Actual Costs are \$12M
- Is the project:
 - A. Running over it's budget
 - B. Running under it's budget
 - C. On budget
 - D. My dog ate my homework, and I don't know

TenStep Earned Value Management Process™

22

Copyright © 2009 TenStep, Inc

Applying Earned Value

- From our previous example, let's assume the Earned Value for our project has been calculated to be \$10M.
- We now have:
 - Planned Value = \$14M
 - Actual Costs = \$12M
 - Earned Value = \$10M

TenStep Earned Value Management Process™

Where are we now?

- Planned Value = \$14M
- Actual Costs = \$12M
- Earned Value = \$10M

	Calculation	Result
Cost Variance CV = EV - AC	\$10M - \$12M	-\$2M
Schedule Variance SV = EV - PV	\$10M - \$14M	-\$4M
Cost Performance Index CPI = EV/AC	\$10M/\$12M	0.83
Schedule Performance Index SPI = EV/PV	\$10M/\$14M	0.71

TenStep Earned Value Management Process™

24

opyright © 2009 TenStep, Inc

Earned Value Formulas

- CV = EV AC
- SV = EV PV
- CPI = EV / AC
- SPI = EV / PV
- EAC = BAC / CPI (typical) = AC + ETC
- ETC = EAC AC (typical) = BAC - EV (atypical variances)
- VAC = BAC EAC

TenStep Earned Value Management Process™

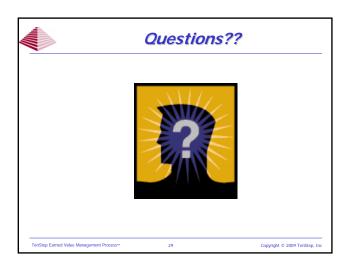
Copyright © 2009 TenStep, Inc

Earned Value Exercise

You have to paint a four-wall room. Each wall takes one day to be painted and is budgeted for \$1,000/ wall. Walls have to be painted one after the other. Today is the end of day three. Using the chart below, calculate all EV formulas and interpret the answers

Task	D1	D2	D3	D4	Current status
Wall 1	SF				Complete, spent \$1,000
Wall 2		SPF	F		Complete, spent \$1,200
Wall 3			PS-S-PF		Half done, spent \$600
Wall 4				PSPF	Not yet started

TenStep Earned Value Management Process™ Copyright © 2009 TenStep, Inc


Earned Value - Answers

	Calculation	Answer	Interpretation
PV	1,000 + 1,000 + 1,000	3,000	We should have done \$3,000 worth of work
EV	1,000 + 1,000 + 500	2,500	We have actually completed \$2,500 worth of work
AC	1,000 + 1,200 + 600	2,800	We spent \$2,800
BAC	1,000 + 1,000 + 1,000 + 1,000	4,000	Budget is \$4,000
CV	2,500 – 2,800 EV - AC	-300	Over budget by \$300

Earned Value - Answers

	Calculation	Answer	Interpretation	
CPI	2,500/2,800 EV / AC	0.893	We are getting 89 cents out of every dollar invested	
SV	2,500 – 3,000 EV - PV	-500	We are behind schedule	
SPI	2,500/ 3,000 EV / PV	0.833	We are progressing at 83% of the planned rate	
EAC	4,000/ 0.893 BAC / CPI	4,479	We estimate that the total project cost will be \$4,479	
ETC	4,479 – 2,800 EAC - AC	1,679	We need to spend \$1,679 to finish the project	
VAC	4,000 - 4,479 BAC - EAC	-479	\$479 over budget when the project will be completed	

